ارزیابی مدل‌های شبکه عصبی مصنوعی و رگرسیون خطی چندگانه در تخمین داده‌های گم شده جریان روزانه (مطالعه موردی: ایستگاه هیدرومتری سنته- استان کردستان)

نویسندگان

  • محمدی, پروا 1. گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز
چکیده مقاله:

Statistical analysis and forecast discharge data play an important role in management and development of water systems. The most fundamental issues of statistical analysis and forecast discharge in Iran are lack of data in long term period and lack of stream flow data in gauging stations. Considering the issues mentioned in this study, we tried to estimate the daily data flow (runoff) of Santeh gauging station in Kordestan province using the nearby hydrometric and meteorological stations data. This estimation occurred based on the sixteen different input combinations, including data of daily flow of hydrometric stations Safakhaneh and Polanian and daily runoff in Santeh precipitation gauging station. In this research, the daily flow estimation of the Santeh station in each of the months of the year was evaluated for sixteen different combinations and artificial neural network models and multiple linear regressions. The performance of each model was evaluated with the indicators RMSE, CC, NS and t-student statistic. The results showed good performance of both models but the performance of the artificial neural network model was better than the regression model in estimation of the daily runoff in the most months of the year. Mean error of artificial neural network and multiple linear regression models was respectively estimated as 6.31 and 8.07 m3/s in the months of the year. It should be noted that the artificial neural network, for each sixteen combination used, had better result than the regression model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین مدول الاستیسیته سنگ بکر با استفاده از شبکه عصبی مصنوعی و رگرسیون غیر خطی

مدول الاستیسیته سنگ بکر یکی از ملزومات اساسی بسیاری از مطالعات ژئومکانیکی و به ویژه پروژه های حفاری سنگ می باشد. برای تعیین مستقیم مدول الاستیسیته نمونه مغزه‌های باکیفیت بالا و هندسه مناسب مورد نیاز بوده و تهیه نمونه‌های مناسب از سنگ‌های شکسته و هوازده برای این منظور به آسانی امکان­پذیر نیست. بنابراین مدل‌های پیش­بینی مدول الاستیسیته براساس خصوصیات شاخص سنگ بکر ارائه گردیده­اند. در این مطالعه ب...

متن کامل

پیش‌بینی جریان روزانه رودخانه با استفاده از مدل هیبرید موجک و شبکه عصبی؛ مطالعه موردی ایستگاه هیدرومتری ونیار در حوضه آبریز آجی چای

با توجه به اهمیت پیش‌بینی جریان رودخانه در مدیریت منابع‌ آب روش‌های مختلفی برای مدل کردن جریان رودخانه‌ها بکار برده می‌شوند. تا بتوان با بکارگیری این مدل در مدیریت خشکسالی و سیلاب خسارات ناشی از آن‌ها را به حداقل ممکن رساند. در این مطالعه نیز برای پیش‌بینی سری‌ زمانی جریان روزانه ایستگاه ونیار، با توجه به ویژگی‌های غیرخطی مقیاس‌های زمانی چندگانه، مدل هیبرید شبکه عصبی و موجک پیشنهاد شده است. برا...

متن کامل

مقایسه کاربرد شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون مؤلفه‌های اصلی و رگرسیون خطی چندگانه جهت مدل‌سازی شاخص کیفیت هوای شهری

شاخص کیفیت هوا ابزار کلیدی جهت آگاهی از کیفیت هوا، نحوۀ اثر آلودگی هوا بر سلامت و روش‌های محافظتی در برابر آلودگی هوا است. هدف اصلی این تحقیق مدل‌سازی و برآورد شاخص کیفیت هوا از طریق شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون خطی چندگانه و رگرسیون مؤلفه‌های اصلی است. جهت محاسبه شاخص کیفیت هوا از داده‌های هواشناسی و آلودگی هوای ثبت شده در ایستگاه تجریش و قلهک شهر تهران در دوره زمانی 1385 تا 1390 استف...

متن کامل

مقایسه و ارزیابی مدل‌های شبکه عصبی بیزین، برنامه‌ریزی بیان ژن، ماشین بردار پشتیبان و رگرسیون خطی در تخمین بده جریان؛ مطالعه موردی حوضه صوفی چای

پیش‌بینی جریان رودخانه برای برنامه‌ریزی طراحی و مدیریت مطمئن پروژه های منابع آب مهم است. در این پژوهش قابلیت کاربرد شبکه عصبی بیزین، برنامه‌ریزی ژن، ماشین بردار پشتیبان و رگرسیون خطی چندمتغیره برای پیش‌بینی سری زمانی جریان رودخانه صوفی چای بررسی شد. سری زمانی جریان روزانه رودخانه برای دوره 1376 تا 1389 برای ایستگاه هیدرومتری تازه کند رودخانه صوفی چای مورد استفاده واقع شد. جهت بدست آوردن بهترین ...

متن کامل

کاربرد مدل شبکه عصبی مصنوعی و رگرسیون خطی چندگانه در برآورد تراکم جنگل در جنگل-های باغان مریوان

مطالعه و مدل‌سازی ویژگی‌های کمی جنگل به‌منظور هدایت اکوسیستم به‌سوی اهداف ایده‌آل و اجرای اقدامات حفاظتی و احیایی از اقدامات مهم به شمار می‌آید. در پژوهش پیش‌رو برآورد مشخصه‌های تعداد در هکتار درختان و تاج‌پوشش جنگل که معرف تراکم در اکوسیستم طبیعی جنگل می‌باشند، با استفاده از مدل رگرسیون خطی چندگانه و مدل شبکه‌ عصبی مصنوعی، به کمک داده‌های توپوگرافی، خاکشناسی، اقلیمی و استفاده از داده‌های سنجش‌...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 21  شماره 4

صفحات  143- 159

تاریخ انتشار 2018-02

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023